定  價(jià):129 元 
					
								  叢書名:國外計(jì)算機(jī)科學(xué)教材系列
					
				 
				 
				  
				
				   
				  
				  
				
						
								
									當(dāng)前圖書已被 12 所學(xué)校薦購過!
								
								
									查看明細(xì)
 
								 
							
							
								
							
				 
	
				
					
						- 作者:(美) Hassan K. Khalil(哈森 ? K. 哈里爾)
- 出版時(shí)間:2019/1/1
- ISBN:9787121357367
- 出 版 社:電子工業(yè)出版社
 
  
		
				- 中圖法分類:TP271 
- 頁碼:760
- 紙張:
- 版次:01
- 開本:16開
 
 
	 
	 
	 
	
	
	
		
		非線性系統(tǒng)的研究近年來受到越來越廣泛的關(guān)注,國外許多工科院校已將"非線性系統(tǒng)”作為相關(guān)專業(yè)研究生的學(xué)位課程。本書是美國密歇根州立大學(xué)電氣與計(jì)算機(jī)工程專業(yè)的研究生教材,全書內(nèi)容按照數(shù)學(xué)知識(shí)的由淺入深分成了四個(gè)部分;痉治霾糠纸榻B了非線性系統(tǒng)的基本概念和基本分析方法;反饋系統(tǒng)分析部分介紹了輸入-輸出穩(wěn)定性、無源性和反饋系統(tǒng)的頻域分析;現(xiàn)代分析部分介紹了現(xiàn)代穩(wěn)定性分析的基本概念、擾動(dòng)系統(tǒng)的穩(wěn)定性、擾動(dòng)理論和平均化以及奇異擾動(dòng)理論;非線性反饋控制部分介紹了反饋線性化,并給出了幾種非線性設(shè)計(jì)工具,如滑?刂啤⒗钛牌罩Z夫再設(shè)計(jì)、反步設(shè)計(jì)法、基于無源性的控制和高增益觀測(cè)器等。此外本書附錄還匯集了一些書中用到的數(shù)學(xué)知識(shí),包括基本數(shù)學(xué)知識(shí)的復(fù)習(xí)、壓縮映射和一些較為復(fù)雜的定理證明。本書已根據(jù)作者于2017年2月更新過的勘誤表進(jìn)行過更正。
		
	
美國密歇根大學(xué)電氣與計(jì)算機(jī)工程系University Distinguished教授。1989年由于其在“奇異擾動(dòng)理論及其在控制中的應(yīng)用”方面的成就被選為IEEE會(huì)士。多年來一直從事非線性系統(tǒng)的教學(xué)和研究工作,主要研究方向包括非線性(魯棒和自適應(yīng))控制、奇異擾動(dòng)理論和電驅(qū)動(dòng)控制。本書第二版曾于2002年獲國際自動(dòng)控制聯(lián)合會(huì)(IFAC)授予的控制工程教材獎(jiǎng)。
美國密歇根大學(xué)電氣與計(jì)算機(jī)工程系University Distinguished教授。1989年由于其在“奇異擾動(dòng)理論及其在控制中的應(yīng)用”方面的成就被選為IEEE會(huì)士。多年來一直從事非線性系統(tǒng)的教學(xué)和研究工作,主要研究方向包括非線性(魯棒和自適應(yīng))控制、奇異擾動(dòng)理論和電驅(qū)動(dòng)控制。本書第二版曾于2002年獲國際自動(dòng)控制聯(lián)合會(huì)(IFAC)授予的控制工程教材獎(jiǎng)。
Contents
1  Introduction
    1.1  Nonlinear Models and Nonlinear Phenomena
    1.2  Examples
          1.2.1  Pendulum Equation
          1.2.2  Tunnel-Diode Circuit
          1.2.3  Mass-Spring System
          1.2.4  Negative-Resistance Oscillator
          1.2.5  Artificial Neural Network
          1.2.6  Adaptive Control
          1.2.7  Common Nonlinearities
    1.3  Exercises
2   Second-Order Systems
    2.1  Qualitative Behavior of Linear Systems
    2.2  Multiple Equilibria
    2.3  Qualitative Behavior Near Equilibrium Points
    2.4  Limit Cycles
    2.5  Numerical Construction of Phase Portraits
    2.6  Existence of Periodic Orbits
    2.7  Bifurcation
    2.8  Exercises
3 Fundamental Properties
    3.1  Existence and Uniqueness
    3.2  Continuous Dependence on Initial Conditions and Parameters
    3.3  Differentiability of Solutions and Sensitivity Equations
    3.4  Comparison Principle
    3.5  Exercises
4   Lyapunov Stability
   4.1  Autonomous Systems
   4.2  The Invariance Principle
   4.3  Linear Systems and Linearization
   4.4  Comparison Functions
   4.5  Nonautonomous Systems
   4.6  Linear Time-Varying Systems and Linearization
   4.7  Converse Theorems
   4.8  Boundedness and Ultimate Boundedness
   4 9  Input-to-State Stability
   4.10 Exercises
5   Input-Output Stability
    5.1  L Stability
    5.2  L1 Stability of State Models
    5.3  L2 Gain
    5.4  Feedback Systems: The Small-Gain Theorem
    5.5  Exercises
6   Passivity
    6.1  Memoryless Functions
    6.2  State Models
    6.3  Positive Real Transfer Functions
    6.4  L2 and Lyapunov Stability
    6.5  Feedback Systems: Passivity Theorems
    6.6  Exercises
7  Frequency Domain Analysis of Feedback Systems
    7.1  Absolute Stability
          7.1.1  Circle Criterion
          7.1.2  Popov Criterion
    7.2  The Describing Function Method
    7.3  Exercises
8  Advanced Stability Analysis
    8.1  The Center Manifold Theorem
    8.2  Region of Attraction
    8.3  Invariance-like Theorems
    8.4  Stability of Periodic Solutions
    8.5  Exercises
9  Stability of Perturbed Systems
   9.1  Vanishing Perturbation
    9.2  Nonvanishing Perturbation
    9.3  Comparison Method
   9.4  Continuity of Solutions on the Infinite Interval
    9.5  Interconnected Systems
    9.6  Slowly Varying Systems
    9.7  Exercises
10 Perturbation Theory and Averaging
    10.1 The Perturbation Method
    10.2 Perturbation on the Infinite Interval
    10.3 Periodic Perturbation of Autonomous Systems
    10.4 Averaging
    10.5 Weakly Nonlinear Second-Order Oscillators
    10 6 General Averaging
    10.7 Exercises
11 Singular Perturbations
    11.1 The Standard Singular Perturbation Model
    11.2 Time-Scale Properties of the Standard Model
    11.3 Singular Perturbation on the Infinite Interval
    11.4 Slow and Fast Manifolds
    11.5 Stability Analysis
    11.6 Exercises
12 Feedback Control
    12.1 Control Problems
    12.2 Stabilization via Linearization
    12.3 Integral Control
    12.4 Integral Control via Linearization
    12.5 Gain Scheduling
    12.6 Exercises
13 Feedback Linearization
    13.1 Motivation
    13.2 Input-Output Linearization
    13.3 Full-State Linearization
    13.4 State Feedback Control
          13.4.1 Stabilization
          13.4.2 Tracking
    13.5 Exercises
14 Nonlinear Design Tools
    14.1 Sliding Mode Control
          14.1.1 Motivating Example
          14.1.2 Stabilization
          14.1.3 Tracking
          14.1.4 Regulation via Integral Control
    14.2 Lyapunov Redesign
          14.2.1 Stabilization
          14.2.2 Nonlinear Damping
    14.3 Backstepping
    14.4 Passivity-Based Control
    14.5 High-Gain Observers
          14.5.1 Motivating Example
          14.5.2 Stabilization
          14.5.3 Regulation via Integral Control
    14.6 Exercises
A Mathematical Review
B Contraction Mapping
C Proofs
Note and References
Bibliography
Symbols
Index