Theoretical Framework and Techniques for Laser Detection Utilizing Coherence
定 價(jià):159 元
- 作者:胡以華
- 出版時(shí)間:2025/5/1
- ISBN:9787030809100
- 出 版 社:科學(xué)出版社
- 中圖法分類(lèi):TN247
- 頁(yè)碼:194
- 紙張:
- 版次:1
- 開(kāi)本:B5
本書(shū)為作者團(tuán)隊(duì)在相干激光探測(cè)領(lǐng)域多年研究的原創(chuàng)成果,共分為五章,系統(tǒng)介紹了激光相干探測(cè)技術(shù)在運(yùn)動(dòng)目標(biāo)大氣擾動(dòng)探測(cè)、測(cè)距測(cè)速、微多普勒效應(yīng)探測(cè)、合成孔徑探測(cè)應(yīng)用中涉及的相關(guān)理論和方法。第一章為激光相干探測(cè)理論基礎(chǔ),主要介紹激光相干探測(cè)基礎(chǔ)知識(shí)、激光相干探測(cè)特點(diǎn)、相干性影響分析、應(yīng)用現(xiàn)狀及典型系統(tǒng)。第二章為運(yùn)動(dòng)目標(biāo)大氣擾動(dòng)的激光相干探測(cè),從運(yùn)動(dòng)目標(biāo)產(chǎn)生的大氣CO2擾動(dòng)和風(fēng)場(chǎng)擾動(dòng)激光相干探測(cè)兩個(gè)方面,按照探測(cè)原理、探測(cè)系統(tǒng)、實(shí)驗(yàn)驗(yàn)證的思路進(jìn)行介紹。第三章為激光相干測(cè)距測(cè)速,主要介紹啁啾調(diào)幅激光相干雷達(dá)測(cè)距和線(xiàn)性調(diào)頻激光相干雷達(dá)測(cè)距測(cè)速。第四章為微多普勒效應(yīng)的激光相干探測(cè),介紹了微多普勒效應(yīng)激光相干探測(cè)建模,以及基于時(shí)頻分析的微動(dòng)特征快速提取和基于信號(hào)模型的微動(dòng)參數(shù)估計(jì)方法。測(cè)原理、信號(hào)設(shè)計(jì)、成像算法、相位補(bǔ)償算法,以及合成孔徑激光雷達(dá)實(shí)驗(yàn)系統(tǒng)及實(shí)驗(yàn)驗(yàn)證結(jié)果。
更多科學(xué)出版社服務(wù),請(qǐng)掃碼獲取。
1979.09~1983.07 解放軍電子工程學(xué)院雷達(dá)工程專(zhuān)業(yè)本科生;
1985.09~1988.02 解放軍電子工程學(xué)院(西北電訊工程學(xué)院學(xué)位)信號(hào)、電路與系統(tǒng)專(zhuān)業(yè)碩士研究生;
1994.09~1997.08 中國(guó)科學(xué)院安徽光學(xué)精密機(jī)械研究所光學(xué)專(zhuān)業(yè)博士研究生;
2006.12~2007.06 澳大利亞南威爾士大學(xué)高級(jí)訪問(wèn)學(xué)者。1983.07~1985.08 解放軍電子工程學(xué)院助教
1988.02~1994.08 解放軍電子工程學(xué)院講師
1997.09~2000.04 中國(guó)科學(xué)院上海技術(shù)物理研究所博士后、副研究員
2000.05~2001.11 解放軍電子工程學(xué)院副教授、碩士生導(dǎo)師
2001.12~2017.06 解放軍電子工程學(xué)院教授、博士生導(dǎo)師
2017.06~至今 國(guó)防科技大學(xué)電子對(duì)抗學(xué)院教授、博士生導(dǎo)師,脈沖功率激光技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室主任1.國(guó)家技術(shù)發(fā)明二等獎(jiǎng),2010年,排名第一;
2.國(guó)家技術(shù)發(fā)明二等獎(jiǎng),2012年,排名第三;
3.安徽省科學(xué)技術(shù)一等獎(jiǎng),2018年,排名第一;
4.安徽省重大科技成就獎(jiǎng),2019年,年度全省唯一。
Contents
Preface Foreword
CHAPTER 1
Theoretical Basis of Laser Coherent Detection 1
1.1 Overview of Laser Detection 1
1.2 Principles of Laser Coherent Detection 2
1.2.1 Square-Law Characteristic of Photoelectric Detectors 3
1.2.2 Characterization of Laser Coherent Detection Signals 3
1.3 Signal-to-Noise Ratio of Laser Coherent Detection 5
1.3.1 Noise of Photoelectric Detectors 5
1.3.2 Signal-to-Noise Ratio of Coherent Detection 7
1.4 Coherence Efficiency of Laser Coherent Detection 9
1.4.1 Signal and LO Optical Fields 9
1.4.2 Coherence Efficiency Analysis 11
1.5 Basic Characteristics of Laser Coherent Detection 11
1.6 Overview of Typical Applications of Laser Coherent Detection 13
1.6.1 Laser Detection of Atmospheric Disturbances 13
1.6.2 Laser Ranging and Velocity Measurement 17
1.6.3 Laser Detection Based on the Micro-Doppler Effect 20
1.6.4 High-Resolution Synthetic Aperture Laser Imaging 23
References 27
CHAPTER 2
Laser Coherent Detection of Atmospheric Disturbances 29
2.1 Fundamental Principles 29
2.1.1 Radar Equation for Laser Detection of Atmosphere 29
2.1.2 Fundamental Principles of Laser Coherent Atmospheric BCO2 Detection 32
2.1.3 Fundamental Principles of Laser Coherent Detection of Wind-Field Disturbances 39
2.2 Experimental System for Laser Coherent Detection of Atmospheric Disturbances 42
2.2.1 Overall Structure of the Detection System 42
2.2.2 Parameter Design of the Detection System 46
2.2.3 Pulse Data Processing of Detection Echoes 57
2.3 Laser Coherent Detection Experiments of Atmospheric Disturbances 62
2.3.1 Atmospheric CO2 Detection Experiments 62
2.3.2 Atmospheric Wind-Field Detection Experiments 68
References 74
CHAPTER 3
Chirped AM Laser Coherent Detection of Range and Velocity 77
3.1 Fundamental Principles 77
3.1.1 Principle of Chirped AM Ranging 79
3.1.2 Principle of Chirped AM Velocity Measurement 79
3.2 Characteristics of Chirp Signals and De-Chirping 80
3.2.1 Chirp Signals and Their Ambiguity Function 80
3.2.2 Pulse Compression by a Matched Filter 83
3.2.3 Frequency-Domain Pulse Compression of Chirp Signals 84
3.2.4 Range-Velocity Coupling 86
3.3 Balanced Coherent Detection 87
3.4 Chirped AM Laser Coherent Detection Experiment of Range and Velocity 88
3.4.1 Chirped AM Laser Heterodyne Coherent Detection Experiments of Range 89
3.4.2 Chirped AM Laser Homodyne Coherent Detection Experiments of Range and Velocity 95
References 102
CHAPTER 4
Laser Coherent Detection Based on the Micro-Doppler Effect 103
4.1 Fundamental Principles of the Micro-Doppler Effect for Laser Detection 103
4.1.1 Doppler and Micro-Doppler Effects 103
4.1.2 Modeling of Echoed Photocurrent Signals in Target Vibration Detection 105
4.1.3 Modeling of Echoed Photocurrent Signals of Targets with Multiple Scattering Points 108
4.1.4 Influencing Factors of Characteristics of Laser Micro-Doppler Signals 112
4.2 Target Micro-Doppler Signal Acquisition and Experimental System for Laser Coherent Detection 119
4.3 Target Micro-Motion Feature Extraction Based on TFA 121
4.3.1 TFA of Micro-Doppler Signals of Targets 121
4.3.2 Decomposition of Time-Frequency Features
of Multi-Component Signals Based on Curve Tracking 125
4.3.3 Separation and Extraction of Time-Frequency Features
of Micro-Motions Based on Empirical Mode Decomposition 128
4.4 Micro-Motion Parameter Estimation Based on Signal Models 132
4.4.1 Micro-Motion Parameter Estimation Using PF Based on SPM 132
4.4.2 Micro-Motion Parameter Estimation Based on ML 136
References 152
CHAPTER 5
Laser Coherent Detection Using Synthetic Aperture Technology 155
5.1 Fundamental Principles of SALs 155
5.1.1 Intuitive Concept of Synthetic Aperture in Lidars 155
5.1.2 Echo Signal Model of SALs 157
5.1.3 Fundamental Principles of Coherent Mixing of Chirp Signals 160
5.2 SAL Imaging Algorithms 162
5.2.1 R-D Imaging Algorithm 162
5.2.2 Phase Gradient Autofocus Algorithm 170
5.3 Laser Coherent Detection Experiments Using Synthetic Aperture Technology 173
5.3.1 Structure of the Experimental System 173
5.3.2 Data Processing Flow 177
5.3.3 Analysis of Experimental Results 178
References 194